Regulation of Akt-dependent cell survival by Syk and Rac.
نویسندگان
چکیده
Interleukin-2 (IL-2) prevents cell apoptosis and promotes survival, but the involved mechanisms have not been completely defined. Although phosphatidylinositide 3-kinase (PI 3-kinase) has been implicated in IL-2-mediated survival mechanisms, none of the 3 chains of the IL-2 receptor (IL-2R) expresses a binding site for PI 3-kinase. However, IL-2Rbeta does express a Syk-binding motif. By using an IL-2-dependent natural killer (NK) cell line, followed by validation of the results in fresh human NK cells, we identified Syk as a critical effector essential for IL-2-mediated prosurvival signaling in NK cells. Down-regulation of Syk by piceatannol treatment impaired NK cellular viability and induced prominent apoptosis as effectively as suppression of PI 3-kinase function by LY294002. Expression of kinase-deficient Syk or pretreatment with piceatannol markedly suppressed IL-2-stimulated activation of PI 3-kinase and Akt, demonstrating that Syk is upstream of PI 3-kinase and Akt. However, constitutively active PI 3-kinase reversed this loss of Akt function caused by kinase-deficient Syk or piceatannol. Thus, Syk appears to regulate PI 3-kinase, which controls Akt activity during IL-2 stimulation. More important, we observed Rac1 activation by IL-2 and found that it mediated PI 3-kinase activation of Akt. This conclusion came from experiments in which dominant-negative Rac1 significantly decreased IL-2-induced Akt activation, whereas constitutively active Rac1 reelevated Akt activity not only in Syk-impaired but also in PI 3-kinase-impaired NK cells. These results constitute the first report of a Syk --> PI3K --> Rac1 --> Akt signal cascade controlled by IL-2 that mediates NK cell survival.
منابع مشابه
Syk and Bruton's tyrosine kinase are required for B cell antigen receptor-mediated activation of the kinase Akt.
Activation of Akt by multiple stimuli including B cell antigen receptor (BCR) engagement requires phosphatidylinositol 3-kinase and regulates processes including cell survival, proliferation, and metabolism. BCR cross-linking activates three families of non-receptor protein tyrosine kinases (PTKs) and these are transducers of signaling events including phospholipase C and mitogen-activated prot...
متن کاملTherapeutic potential of genistein in ovariectomy-induced pancreatic injury in diabetic rats: The regulation of MAPK pathway and apoptosis
Objective(s): Genistein, as a phytoestrogen found in legumes, has several biological activities in general and anti-diabetic activity particularly. In this study, we investigated the effect of genistein on proteins involved in β-cell proliferation, survival and apoptosis to further reveal its anti-diabetic potential in the ovariectomized diabetic rat. Materials and Methods: We used three-month-...
متن کاملSpleen tyrosine kinase inhibition prevents chemokine- and integrin-mediated stromal protective effects in chronic lymphocytic leukemia.
The microenvironment provides essential growth and survival signals to chronic lymphocytic leukemia (CLL) cells and contributes to their resistance to cytotoxic agents. Pharmacologic inhibition of spleen tyrosine kinase (SYK), a key mediator of B-cell receptor (BCR) signaling, induces apoptosis in primary CLL cells and prevents stroma contact-mediated cell survival. This report demonstrates a r...
متن کاملSpleen Tyrosine Kinase Is Involved in the CD38 Signal Transduction Pathway in Chronic Lymphocytic Leukemia
The survival and proliferation of CLL cells depends on microenvironmental contacts in lymphoid organs. CD38 is a cell surface receptor that plays an important role in survival and proliferation signaling in CLL. In this study we demonstrate SYK's direct involvement in the CD38 signaling pathway in primary CLL samples. CD38 stimulation of CLL cells revealed SYK activation. SYK downstream target ...
متن کاملPI3K/Akt/mTOR and CDK4 combined inhibition enhanced apoptosis of thyroid cancer cell lines
Introduction Thyroid cancer is a malignant disease with poor prognosis. The PI3K/Akt/mTOR and Cyclin-Dependent Kinase 4 (CDK4) pathways are vital regulators of tumor cell proliferation and survival. Therefore the present study was designed to use dual inhibition of such pathways to kill thyroid cancer cells. Methods and materials The effects of each inhibitors on human ATC and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 101 1 شماره
صفحات -
تاریخ انتشار 2003